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ABSTRACT: The goal of metabolomics is to measure the
entire range of small organic molecules in biological samples.
In liquid chromatography−mass spectrometry-based metab-
olomics, formidable analytical challenges remain in removing
the nonbiological factors that affect chromatographic peak
areas. These factors include sample matrix-induced ion
suppression, chromatographic quality, and analytical drift.
The combination of these factors is referred to as obscuring
variation. Some metabolomics samples can exhibit intense
obscuring variation due to matrix-induced ion suppression,
rendering large amounts of data unreliable and difficult to
interpret. Existing normalization techniques have limited
applicability to these sample types. Here we present a data
normalization method to minimize the effects of obscuring
variation. We normalize peak areas using a batch-specific normalization process, which matches measured metabolites with
isotope-labeled internal standards that behave similarly during the analysis. This method, called best-matched internal standard
(B-MIS) normalization, can be applied to targeted or untargeted metabolomics data sets and yields relative concentrations. We
evaluate and demonstrate the utility of B-MIS normalization using marine environmental samples and laboratory grown cultures
of phytoplankton. In untargeted analyses, B-MIS normalization allowed for inclusion of mass features in downstream analyses
that would have been considered unreliable without normalization due to obscuring variation. B-MIS normalization for targeted
or untargeted metabolomics is freely available at https://github.com/IngallsLabUW/B-MIS-normalization.

Liquid chromatography−mass spectrometry (LC-MS)-
based metabolomics has emerged as an important

scientific tool over the past decade, with the potential to
identify and quantify thousands of compounds resulting from
cellular activity.1−3 Quantification relies on an analyte’s
concentration being proportional to its peak area. However,
independent of analyte concentration, peak areas can be
affected by sample-matrix-induced ion suppression, injection
volume, chromatographic quality, or analytical drift over time;
the overall effects of these nonbiological factors are referred to
here as obscuring variation since they may mask biological
differences of interest.4 Performing metabolomics analyses on
environmental samples is especially challenging because
complex matrices such as natural seawater or culture media
introduce variability in ionization efficiency, but there are no
universally accepted normalization techniques for minimizing
obscuring variation in environmental samples. Here we present
a normalization method that addresses this outstanding
challenge in LC-MS-based metabolomics.
In biomedical metabolomics, there are several approaches to

minimize obscuring variation that rely on pre- or post-
acquisition normalization. However, application of these
approaches to environmental metabolomics is limited, and

little attention has been given to removing obscuring variation
in environmental samples.3,5−12 Preacquisition normalization
approaches ensure that samples are at similar concentrations
before analysis to minimize the effect of matrix-induced ion
suppression. Postacquisition normalization techniques fall into
two general categories, those that use a quality control sample
injected several times over the course of a run to correct for
analytical drift, and those that employ isotope-labeled internal
standards.
Analytical drift over time can be normalized postacquisition

by applying a quality control-based locally weighted scatterplot
smoothing (LOESS)13,14 or vector regression;15 these
approaches attempt to minimize one aspect of obscuring
variation (analytical drift) and assume that the sample-matrix
induced ion suppression is consistent between samples. This
approach may be appropriate in biomedical studies when
prenormalization can be carefully applied (for instance, by
adjusting sample concentration or injection volume so that
there is a consistent amount of creatinine in each sample, as
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done routinely in urine metabolomics16,17). For complex
matrices, prenormalization is often impossible due to the
variability in matrix among samples or lack of information
about sample size. For instance, if cell density is not known
until after sample collection, extracting a consistent amount of
biomass is not possible. Furthermore, these approaches require
large sample sets and tens of injections of a pooled sample as a
quality control, which is not always possible in metabolomics
studies with limited sample size and few samples to compare.
Other postacquisition strategies use isotope-labeled internal

standards to minimize obscuring variation. Some studies
normalize each metabolite peak area to a single isotope-
labeled internal standard.18 This approach is very sensitive to
the internal standard used for normalization and assumes that
all compounds experience the same obscuring variation as the
internal standard; these caveats make this approach limited in
utility. Other studies use multiple internal standards, applying
each to analytes that elute within a prescribed retention time
window.19,20 Although this may be an improvement over a
single internal standard, these approaches do not consider the
fact that obscuring variation is not fully described by retention
time. Our group has previously used a hybrid approach that
matches isotope-labeled internal standards to analytes for
which commercially available isotope-labeled internal stand-

ards are unavailable,21,22 but this has not been applied to full-
scale metabolomics analyses.
In laboratory studies, growing an organism on a 13C-labeled

substrate can yield a valuable 13C-labeled stock used to
calculate accurate concentrations of both targeted and
untargeted metabolites and aid in metabolite identification,9,23

but this approach cannot be applied to studies of mixed
communities in the environment. More sophisticated ap-
proaches attempt to model the variability of each peak by a
combination of internal standards.4,24 These methods require
tens of injections of a pooled sample to obtain sufficient data
for model training and make use of logarithmic trans-
formations, which may limit quantitative comparison and
hinder intuitive interpretation. To our knowledge, these
methods have not been applied to targeted metabolomic
analyses.
Given the paucity of normalization approaches that are

appropriate for minimizing obscuring variation in samples with
a high degree of complexity in both analytes and matrices, we
present a method called best-matched internal standard (B-
MIS) normalization. This method has the following advantages
over existing techniques: (1) B-MIS normalization can be
applied to targeted and untargeted metabolomics studies with
sample sets of any size or nature. (2) B-MIS normalization can
be customized to accommodate any number and variety of

Scheme 1. Overview of Data Acquisition and Processinga

aAfter extraction, aqueous fractions were run on both RP and HILIC, while organic fractions were run only on RP. These fractions were run on
both the TQS and QE. Skyline27 was used for integrations for targeted analyses. XCMS29−31 was used for peak-picking and integrations for
untargeted analyses. Data were subjected to quality control filtering as described in the text. For each compound detected, the B-MIS was chosen
via the steps shown. RSD = relative standard deviation. *Only applicable in targeted analyses. **This cut-off is user defined; in our analyses, an
internal standard was considered acceptable if it decreased the RSD of the pooled injections by 40%.
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internal standards of the user’s choice. (3) B-MIS normal-
ization does not assume a uniform matrix effect among samples
and minimizes obscuring variation induced by sample-specific
matrix-induced ionization. (4) B-MIS normalization is
independent of and can be paired with other sample
normalization pre- or postacquisition. (5) B-MIS normal-
ization is simple to apply, intuitive to interpret, and open
source.
To demonstrate both the need for this method and its

functionality, we used two sample sets: marine environmental
samples and laboratory cultures of marine phytoplankton. We
analyzed these samples on two mass spectrometers: a Waters
Xevo TQ-S triple quadrupole, for targeted analyses, and a
Thermo QExactive HF, for untargeted analyses, using both
reversed phase (RP) and hydrophilic interaction liquid
chromatography (HILIC). A comparative analysis of these
platforms revealed the strengths of each and highlighted the
need for careful normalization and application of B-MIS
normalization regardless of platform.

■ EXPERIMENTAL SECTION

The workflow for sample analysis and data processing is shown
in Scheme 1. Additional details on sample preparation,
chromatography, mass spectrometry, and quality control
parameters are described in the Supporting Information.
Sample Preparation. We evaluated two sets of complex

samples in triplicate: cultures of one species of diatom grown
under four experimental conditions (salinity of 32 g/kg at both
−1 and 4 °C, salinity of 41 g/kg at both −1 and 4 °C), and a
natural marine microbial community at four depths in the
North Pacific subtropical gyre (24° 33.284′ N, 156° 19.790′
W; samples collected at 15, 45, 75, and 125 m, all with
salinities of 35 g/kg). Polar and nonpolar metabolites were
extracted using a modified Bligh−Dyer extraction25,26 using
1:1 methanol/water (aqueous phase) and dichloromethane
(organic phase). Methodological blanks were extracted and
analyzed along with each sample set. Isotope-labeled internal
standards were added either before or after the extraction to all
samples, blanks, and pooled samples (Table S1). To evaluate
the effect of obscuring variation due to different matrix
strengths and analytical drift, pooled samples were run at both
full and half concentration (diluted with water) at least three
times throughout a sample set.
Liquid Chromatography. As in previous metabolomic

studies,2 we paired RP with HILIC (with separate injections)
to maximize the number of compounds we were able to detect
since many compounds that eluted early on the RP column
were better retained and provided higher quality peaks on the
HILIC column (Figures S1 and S2). All chromatographic
separations were carried out on a Waters Acquity I-Class
UPLC (Waters Corporation, Milford, MA). For targeted
analysis, we monitored 105 analytes with RP and 126 analytes
with HILIC, according to which column demonstrated better
retention; 11 analytes were monitored on both columns to
compare the performance of RP and HILIC chromatography
in complex matrices (Table S2).
Mass Spectrometry. For targeted metabolomics, we used

a Waters Xevo TQ-S triple quadrupole (TQS) with electro-
spray ionization (ESI) in selected reaction monitoring mode
(SRM) with polarity switching. SRM conditions for each
compound (collision energy, cone voltage, precursor, and
product ions, Table S2) were optimized by infusion of each

metabolite standard. For most metabolites, two SRM
transitions were selected based on maximum peak areas.
We used a Thermo QExactive HF (QE) with ESI for

untargeted analyses. For HILIC, a full scan method with
polarity switching was used. For RP, positive ionization mode
was chosen over positive/negative switching because few of the
compounds in our targeted method ionized in the negative
mode and using a single mode enabled higher resolution.

Data Processing. For targeted analysis, we integrated
peaks using Skyline for small molecules.27 After integration, we
passed the data through an in-house quality control (QC) filter
to ensure proper metabolite identification as described in the
Supporting Information.
For untargeted metabolomics data, we converted

Thermo.RAW files to .mzxml using MSConvert28 and
processed each data set using XCMS29−31 (using parameters
obtained via an Isotopologue Parameter Optimization32),
yielding retention-time corrected mass features. We processed
both data sets in separate XCMS runs according to injection
and polarity (RP-aqueous, RP-organic, HILIC-aqueous (pos-
itive polarity), and HILIC-aqueous (negative polarity)). Data
were quality controlled, as described in the Supporting
Information, prior to normalization.

B-MIS Normalization. The best normalization for each
analyte was determined using repeat injections of a quality
control sample to search for an isotope-labeled internal
standard whose obscuring variation matched the observed
obscuring variation of the analyte, as shown in Scheme 1. For
our sample sets, multiple injections of the pooled sample at full
and half strength were used in order to capture the obscuring
variation due to variable matrix strength. After correcting for
dilution, if the relative standard deviation (RSD) of an
analyte’s peak area in these repeat injections was less than 10%,
the raw data were used. Otherwise, each analyte-internal
standard pair was evaluated for normalization. An internal
standard was deemed an acceptable match for an analyte if the
analyte’s RSD improved by 40% over the raw RSD, as
discussed in the following section. If multiple internal
standards were acceptable for normalization of a single analyte,
the one that minimized the RSD was selected. When a B-MIS
was chosen, the peak area was divided by the ratio of the peak
area of the B-MIS to the average peak area of the B-MIS across
the whole sample set, resulting in an adjusted peak area for the
analyte. This adjusted peak area served as a relative
quantification across samples in the sample set. If the goal of
an analysis is absolute quantification and standards are
available, analytes can be quantified via standard addition in
a subset of samples and then applied across the sample set
using the relative quantification of the B-MIS adjusted peaks.
For internal standards with only one or two labeled atoms in

the compound, we examined the methodological blank to
ensure the signal was comparable to that in the samples,
indicating that there was not significant contribution from
naturally occurring isotopologues. For future users, we suggest
choosing isotope-labeled internal standards with at least a +2
amu label to avoid any naturally occurring isotopologue
contamination. In the sample sets analyzed here, the isotope-
labeled internal standards were significantly more abundant
that naturally occurring isotopologues, so contamination was
negligible.
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■ RESULTS AND DISCUSSION
Evaluation of Data Quality and Instrument Perform-

ance. As in other studies,33−35 we found the HILIC column
produced more variable chromatography than the RP column
(higher median RSD of peak area, Figure 1A, see the example
of choline in Figure S1, full results in Table S3). Despite lower
chromatographic reproducibility, compounds analyzed on the
HILIC column generally exhibited less ion suppression than
those analyzed on the RP column. RP chromatography
displayed a bimodal distribution of response factor ratios
(Figure 1B), demonstrating significant ion suppression for
many analytes (response factor ratio < 1). Ion suppression was
especially dramatic for polar compounds that elute early in RP
but were retained on the HILIC column (Figures S1 and S2).
The range of ion suppression and RSD for a given LC-MS
configuration indicated that careful selection of a normalization
technique was necessary to account for obscuring variation.
This is particularly important when comparing samples in
complex matrices such as the environmental matrix highlighted
in Figure 1. Furthermore, the wide range in response factor
ratios and RSD of peak areas for different analytes in the same
matrix demonstrated that normalizing all compounds to a
single internal standard18,20 would likely introduce more
obscuring variation than it removed.
Evaluating B-MIS Normalization. Most environmental

metabolomics analyses do not attempt to remove variability
introduced during analysis.5,6,8,36 B-MIS normalization was
designed to minimize obscuring variation in order to allow
robust comparisons within and between sample sets. We
evaluate B-MIS normalization by (a) demonstrating that
lowering the RSD of multiple injections of a pooled sample

improves data precision and arriving at a cutoff value at which
to apply normalization, (b) comparing the results from B-MIS
normalization with the “gold standard” of correcting with an
isotopologue for each analyte of interest, and (c) assessing the
selection of internal standards used for normalization.
To demonstrate the fundamental principle and evaluate the

effectiveness of B-MIS normalization, we applied the technique
to the internal standards themselves. In other words, we
evaluated how well the internal standards’ variabilities were
matched by each of the other internal standards. Figure 2 is an
example of this application, where each point is the resulting
RSD of D3-alanine in replicate injections of the pooled sample
(x-axis) and across all samples in the environmental sample set
(y-axis) after normalization to each possible internal standard;
since we add the same amount of the internal standard to each
sample, both of these values should be near zero. Figure 2
highlights that internal standards that reduced RSD of the
pooled injections generally resulted in a reduced RSD across
samples (toward zero in both the x- and y-axes). However, in
this example case, there were two instances where a reduction
in RSD of pooled sample injections increased the RSD of the
samples (marked on Figure 2 with an asterisk); this
introduction of variability can be avoided by applying
normalization only if the pooled RSD was improved beyond
a cutoff value.
Our goal was to maximize the number of compounds that

can be improved by B-MIS normalization while minimizing the
likelihood of introducing error. After assessing all internal
standards, we determined that requiring a 40% improvement of
pooled RSD (that is, (RSDfinal − RSDraw)/RSDraw) avoided the
majority of situations where using an internal standard would
result in an increase of sample variability (Figures 2 and S3 and
Table S6). Therefore, we chose this cutoff as the criteria to
apply B-MIS normalization (see Scheme 1). Additionally, we
did not normalize any compounds or mass features that had a
raw pooled RSD of below 10% because the chances of

Figure 1. Box-and-whisker plots of (A) relative standard deviation
(RSD) of peak areas determined by repeated injections of standards
spiked into our environmental sample matrix and (B) response factor
ratio on four LC−MS configurations, with individual dots
representing single compounds (expanded horizontally for visual-
ization of data density, n = 101 analytes in RP, 110 in HILIC).
Response factor ratio is the ratio of the intensity of a standard injected
in environmental matrix (less the ambient matrix signal, if applicable)
to the intensity of the standard injected in water. Response factor ratio
< 1 indicates ion suppression, response factor ratio > 1 indicates ion
enhancement.

Figure 2. RSD of D3-alanine in replicate injections of the pooled
sample (x-axis) and across all samples in the environmental sample set
(y-axis) after normalization to all possible internal standards. The
black point represents the RSD of raw peak areas. The point at the
origin is D3-alanine normalized to itself. Filled points show the
normalization results with an acceptable matched internal standard
according to our cutoff of 40% RSD improvement (left of dotted
line); open points show normalization results using unacceptable
internal standards (right of dotted line, Scheme 1). Results from other
internal standards are in Figure S3.
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significant improvement are low. Before applying B-MIS
normalization, we suggest users perform a similar sensitivity
analysis to determine an appropriate cutoff using a
representative sample set and internal standard suite. Tools
for this analysis are available with B-MIS.
The gold standard for absolute quantitation is an

isotopologue of each analyte, but isotope-labeled internal
standards are costly, consume duty time on the MS (in
targeted analyses) and are not commercially available for many
compounds. In our targeted analyses, analytes with corre-
sponding isotope-labeled internal standards were normalized
to those internal standards (see Scheme 1). If this was not
prescribed, the algorithm occasionally selected a different
internal standard, though the lowered RSD was often similar to
that of the prescribed B-MIS. For example, in the environ-
mental data set, the amino acid valine could have selected the
D7-proline internal standard based on the RSD reduction (raw
peak area RSD was 30.8%, which was minimized to 3.5% with
normalization to D7-proline). However, the “gold standard”
internal standard, D8-valine, reduced the RSD to a similar
4.8%, indicating proline and valine experienced nearly identical
obscuring variation in this matrix. For the other analytes that
have an isotope-labeled internal standard, the majority
included their corresponding internal standard as an acceptable
B-MIS (>60% in both data sets, Table S5). Most cases where
the corresponding internal standard was not considered
acceptable were due to the stringency of the 40% improvement
cutoff. Nearly all of the analytes with an isotope-labeled
internal standard were less variable after normalization to their
corresponding internal standard, with one exception in each
data set (pyridoxal in the environmental data set, cysteic acid
in the culture data set; these exceptions were both improved by
normalization in the other data sets).
The success of B-MIS normalization relies heavily on having

an appropriate suite of internal standards. However, if a mass
feature does not match well with any internal standard, B-MIS
normalization defaults to using the raw data, which a user can
choose to include in subsequent analysis. Increasing the
number and chemical variety of internal standards results in
fewer features whose obscuring variation are not improved by
B-MIS normalization (Figure S4). In our two data sets, the B-
MIS for the targeted analytes were typically close in retention
time (in RP, Figure S5) or similar in chemistry (in HILIC).
For instance, amino acids generally matched with an isotope-
labeled amino acid B-MIS while sulfonates generally matched
with a sulfonate B-MIS (Table S5). Figure S4 shows that the
internal standards used in HILIC chromatography covered a
wide enough range of chemical diversity to effectively reduce
obscuring variation in the majority of analytes detected under
these conditions.
The specific choice of internal standards used in B-MIS

normalization is not prescribed and can vary from user to user;
we suggest a selection of internal standards that spans
retention time, m/z, and functional groups of interest. Before
analyzing a full sample set, users should determine the
proportion of mass features which select each internal standard
as “acceptable” and “best” matches by running a pooled or
representative sample at different dilutions. This will reveal
which, if any, internal standards are matching with a large
number of mass features and may indicate that more internal
standards with similar chemical diversity could be beneficial
(see Table S4). For example, in our untargeted diatom culture
data 13C3−vitamin B1 (thiamine) was selected as acceptable for

nearly 10% of mass features detected in the aqueous fraction
analyzed with RP chromatography and it was selected as the B-
MIS for all of these features. It is likely that normalization of
these compounds could improve if we included more internal
standards similar to 13C3-vitamin B1. Some internal standards
were infrequently selected as appropriate (such as 15N-
isoleucine), while others were appropriate for many but only
the best for a few (such as D7-proline), indicating sufficient
coverage to effectively normalize compounds that experienced
similar obscuring variation.

Application of B-MIS Normalization. B-MIS normal-
ization only adjusts areas of metabolite peaks with high
obscuring variation if normalization improves the technical
reproducibility above a specified cutoff (in our case, a 40%
improvement over the raw technical reproducibility); there-
fore, a subset of analytes are not normalized. Figure 3 shows an

example of two analytes (taurine and tyrosine) detected in the
pooled diatom-culture sample whose RSD were improved by
B-MIS normalization. For the sample sets analyzed here, 54%
(diatom samples) and 79% (environmental samples) of
analytes in the targeted data selected an internal standard for
normalization (Table S5 and Figure S5).
For each compound, the RSD of the pooled injections

depends on the sample matrix, though the sample sets showed
a similar range of RSD after B-MIS normalization (Figure S6).
Of the 25 targeted analytes that were measured in both sample
sets and found acceptable internal standards for normalization,
20 shared acceptable internal standards, while five analytes did
not (Table S5 and Figure S6). The compounds which did not
improve with B-MIS normalization were not always consistent
from environmental to culture sample sets. For example, there
were 18 compounds that did not pick a B-MIS in the targeted
environmental sample set. In the culture sample set, six of
these compounds selected a B-MIS, four did not select a B-
MIS, and the remaining eight were not detected (Table S5).
These differences between sample sets demonstrated that,
while fundamental chemistry has some predictive capacity to

Figure 3. Example of B-MIS normalization for taurine and tyrosine in
the diatom sample set. (A) Areas of D4-taurine, taurine, and tyrosine
in pooled samples after adjusting for dilution, in order of injection.
(B) After normalization, areas are adjusted, with the B-MIS
normalization reducing the RSD of taurine from 19% to 5%, while
the RSD tyrosine decreases from 27% to 12% (black triangles).
Normalizing to an unacceptable internal standard (13C2-sulfoacetic
acid, gray triangles) did not reduce the RSD of tyrosine as effectively.
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describe obscuring variation, the complexity of the sample
matrix makes definitive prediction unrealistic.
In untargeted metabolomics, it is common to remove any

mass features that do not exhibit reliable data.37 One way this
is achieved is by calculating the RSD of each mass feature in a
multiply injected pooled sample and removing features that
have a RSD greater than 20%.13,37 In the case of our
untargeted data, B-MIS normalization increased the number of
mass features that passed this RSD filter from 3836 to 5028 (in
the diatom samples) and from 5568 to 9372 (in the
environmental samples), preserving many high-quality peaks
that would otherwise have been discarded (Figure S7). In our
environmental untargeted analysis, 54% and 53% of the mass
features detected on the HILIC and RP columns, respectively,
matched with an acceptable internal standard and showed
decreased variability with a B-MIS (Figure S4). In this data set,
a third of the most abundant and significantly different mass
features would have been excluded if this RSD filtering had
been performed prior to B-MIS normalization (Figure 4). A
total of 7 of the 10 mass features most enriched in the sample
collected at 125 m compared to the sample collected at 15 m
would have been excluded without B-MIS normalization
before filtering (Figure 4). This comparison highlights that
meaningful biological interpretation of the differences between
samples hinges on proper normalization. We therefore
recommend applying B-MIS normalization before filtering
out mass features based on RSD.

■ CONCLUSIONS

Published environmental metabolomics analyses have not
attempted to minimize the obscuring variation inherent to LC-
MS-based data acquisition. In both targeted and untargeted
environmental samples, we demonstrate the need for careful
normalization due to matrix-induced ion suppression and
analytical drift. This manuscript introduces, evaluates, and
applies a batch-specific, simple, and customizable normal-
ization process: Best-Matched Internal Standard (B-MIS)
normalization. By applying B-MIS normalization, we are able
to retain many more LC-MS mass features during untargeted
RSD filtering. For future users, we have made the tools to
customize, apply, and evaluate B-MIS normalization freely
available at https://github.com/IngallsLabUW/B-MIS-
normalization.
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Bioinf. 2007, 8, 93.
(5) Kido Soule, M. C.; Longnecker, K.; Johnson, W. M.; Kujawinski,
E. B. Mar. Chem. 2015, 177, 374−387.

Figure 4. Log2-fold change between surface (15 m) and deep (125 m) environmental samples for the 500 most abundant mass features in each
sample type that were significantly different between depths (false discovery rate38 adjusted p-values < 0.05, Student’s t-test). A positive fold change
indicates enrichment in the 125 m samples. Many mass features (292 of the 883 shown here) may not have been considered reliable peaks (RSD >
20%) due to high obscuring variation which was minimized through B-MIS normalization; these mass features are highlighted in red.

Analytical Chemistry Article

DOI: 10.1021/acs.analchem.7b04400
Anal. Chem. 2018, 90, 1363−1369

1368

http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b04400/suppl_file/ac7b04400_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b04400/suppl_file/ac7b04400_si_001.pdf
https://github.com/IngallsLabUW/B-MIS-normalization
https://github.com/IngallsLabUW/B-MIS-normalization
http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.analchem.7b04400
http://pubs.acs.org/doi/abs/10.1021/acs.analchem.7b04400
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b04400/suppl_file/ac7b04400_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b04400/suppl_file/ac7b04400_si_002.xlsx
mailto:aingalls@uw.edu
http://orcid.org/0000-0002-4504-1039
http://dx.doi.org/10.1021/acs.analchem.7b04400


(6) Llewellyn, C. A.; Sommer, U.; Dupont, C. L.; Allen, A. E.; Viant,
M. R. Prog. Oceanogr. 2015, 137, 421−433.
(7) Johnson, W. M.; Kido Soule, M. C.; Kujawinski, E. B. ISME J.
2016, 10, 2304−2316.
(8) Barofsky, A.; Vidoudez, C.; Pohnert, G. Limnol. Oceanogr.:
Methods 2009, 7, 382−390.
(9) Swenson, T. L.; Jenkins, S.; Bowen, B. P.; Northen, T. R. Soil
Biol. Biochem. 2015, 80, 189−198.
(10) Baran, R.; Bowen, B. P.; Bouskill, N. J.; Brodie, E. L.; Yannone,
S. M.; Northen, T. R. Anal. Chem. 2010, 82, 9034−9042.
(11) Paul, C.; Mausz, M. A.; Pohnert, G. Metabolomics 2013, 9,
349−359.
(12) Johnson, W. M.; Kido Soule, M. C.; Kujawinski, E. B. Limnol.
Oceanogr.: Methods 2017, 15, 417−428.
(13) Dunn, W. B.; Broadhurst, D.; Begley, P.; Zelena, E.; Francis-
McIntyre, S.; Anderson, N.; Brown, M.; Knowles, J. D.; Halsall, A.;
Haselden, J. N.; Nicholls, A. W.; Wilson, I. D.; Keil, D. B.; Goodacre,
R.; Consortium, T. H. S. M. Nat. Protoc. 2011, 6, 1060−1083.
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(30) Tautenhahn, R.; Böttcher, C.; Neumann, S. BMC Bioinf. 2008,
9, 504.
(31) Benton, H. P.; Want, E. J.; Ebbels, T. M. Bioinformatics 2010,
26, 2488−2489.
(32) Libiseller, G.; Dvorzak, M.; Kleb, U.; Gander, E.; Eisenberg, T.;
Madeo, F.; Neumann, S.; Trausinger, G.; Sinner, F.; Pieber, T.;
Magnes, C. BMC Bioinf. 2015, 16, 118.
(33) Contrepois, K.; Jiang, L.; Snyder, M.Mol. Cell. Proteomics 2015,
14, 1684−1695.
(34) Cubbon, S.; Antonio, C.; Wilson, J.; Thomas-Oates, J. Mass
Spectrom. Rev. 2010, 29, 671−684.
(35) Spagou, K.; Tsoukali, H.; Raikos, N.; Gika, H.; Wilson, I. D.;
Theodoridis, G. J. Sep. Sci. 2010, 33, 716−727.

(36) Poulson-Ellestad, K. L.; Jones, C. M.; Roy, J.; Viant, M. R.;
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